On the Joint Analysis of the Total Discounted Payments to Policyholders and Shareholders: Dividend Barrier Strategy

نویسندگان

  • Eric C.K. Cheung
  • Haibo Liu
چکیده

In the compound Poisson insurance risk model under a dividend barrier strategy, this paper aims to analyze jointly the aggregate discounted claim amounts until ruin and the total discounted dividends until ruin, which represent the insurer’s payments to its policyholders and shareholders, respectively. To this end, we introduce a Gerber–Shiu-type function, which further incorporates the higher moments of these two quantities. This not only unifies the individual study of various ruin-related quantities, but also allows for new measures concerning covariances to be calculated. The integro-differential equation satisfied by the generalized Gerber–Shiu function and the boundary condition are derived. In particular, when the claim severity is distributed as a combination of exponentials, explicit expressions for this Gerber–Shiu function in some special cases are given. Numerical examples involving the covariances between any two of (i) the aggregate discounted claims until ruin, (ii) the discounted dividend payments until ruin and (iii) the time of ruin are presented along with some interpretations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Dividends in an Ornstein-Uhlenbeck Type Model with Credit and Debit Interest

In the absence of investment and dividend payments, the surplus is modeled by a Brownian motion. But now assume that the surplus earns investment income at a constant rate of credit interest. Dividends are paid to the shareholders according to a barrier strategy. It is shown how the expected discounted value of the dividends and the optimal dividend barrier can be calculated; Kummer’s confluent...

متن کامل

On Exact Solutions for Dividend Strategies of Threshold and Linear Barrier Type in a Sparre Andersen Model* By

For the classical Cramér-Lundberg risk model, a dividend strategy of threshold type has recently been suggested in the literature. This strategy consists of paying out part of the premium income as dividends to shareholders whenever the free surplus is above a given threshold level. In contrast to the well-known horizontal barrier strategy, the threshold strategy can lead to a positive infinite...

متن کامل

Optimal Dividend Problem for a Compound Poisson Risk Model

In this note we study the optimal dividend problem for a company whose surplus process, in the absence of dividend payments, evolves as a generalized compound Poisson model in which the counting process is a generalized Poisson process. This model includes the classical risk model and the Pólya-Aeppli risk model as special cases. The objective is to find a dividend policy so as to maximize the ...

متن کامل

Dividend Strategies for Insurance risk models

Based on different objectives, various insurance risk models with adaptive polices have been proposed, such as dividend model, tax model, model with credibility premium, and so on. In this report, we will only focus the study on dividend strategies. Here are some reasons why the dividend strategy is of interest. For an insurance company, ruin occurs when a claim size is greater than its reserve...

متن کامل

An Investigation into Effects of Dividend Policy on Financial Growth of Advertising Firms in Kenya

Effects of dividend policy on corporate financial growth, is a major concern of most entities. Whether dividends have an influence on the value of the firm, is an important question in dividend policy. This study aimed at investigating the effects of dividend policy on financial growth of media firms. The study was conducted in Nairobi at The Nation media Group Headquarters. Respondents were se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015